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Halide perovskite solar cells (PSCs) have attracted wide in-
terests  in  photovoltaics  field  due  to  the  prominent  advant-
ages of perovskite materials. To date, the certified power con-
version  efficiency  (PCE)  of  lead-based  PSCs  has  reached  to
25.5%[1]. However, the toxicity of lead in PSCs limits the practic-
al  application.  Tin  (Sn)-based  perovskites  are  the  most  prom-
ising candidates because of their narrow bandgap and compar-
able  optoelectronic  properties  to  lead  analogues.  The  relat-
ively  narrower  bandgap  of  Sn-perovskites  possess  expanded
absorption  of  sunlight.  The  pioneering  Sn-based  PSCs  based
on MASnI3 (MA = methylammonium) gave 5%–6% PCEs[2]. Not-
ably,  the inferior device performance and stability restrict  the
explorations  due  to  the  facile  oxidation  of  Sn2+ to  Sn4+,  fast
crystallization,  low  formation  energy  of  Sn  vacancies  and
high level  of  self-doping[3, 4].  Currently,  efforts  are devoted to
the  development  of  reducing  reagents,  manipulation  of  the
perovskite  dimensionality,  and  optimization  of  the  interfacial
energy  level  alignment  of  Sn-based  PSCs.  As  summarized  in
Fig.  1(a),  the  PCE  of  Sn-based  PSCs  break  double  digits  re-
cently,  indicating  a  renaissance  of  the  Pb-free  PSCs  explora-
tion.  Here,  the  most  recent  advances  of  Sn-based  PSCs  are
highlighted.

To  probe  the  defect  chemistry  of  Sn-perovskites,  the  lat-
tice instability and electronic disorder act as triggers for unfa-
vorable  oxidation  from  Sn2+ to  Sn4+[5].  Besides,  the  calcula-
tion of defect formation energy (Figs.  1(b) and 1(c))  indicated
that  Sn2+ was  only  stable  within  the  bandgap  of  bulk  and
Sn4+ defects  usually  located in  the deep valence band (VB)[6].
The  oxidation  to  Sn4+ could  be  activated  at  the  surface  act-
ing as a surface electron trap (Fig. 1(c)). Therefore, the Sn4+ el-
evates the defect concentration and exacerbates carrier recom-
bination, leading to a deterioration of device performance, es-
pecially the open-circuit voltage (Voc).

To suppress the oxidation of Sn2+, various reducing addit-
ives such as hypophosphorous acid[7], Sn(0) powder[8], and hy-
drazine  vapor[9] were  utilized.  Liu et  al.  introduced  phenylhy-
drazine  hydrochloride  (PHCl)  into  FASnI3 (FA  =  formamidini-
um)  perovskite  films  to  reduce  the  existing  Sn4+ since  PHCl
has  a  reductive  hydrazine  group  and  a  hydrophobic  phenyl
group[10].  The resulting PSC gave a  PCE of  11.4%.  Meanwhile,
the unencapsulated device showed almost no decay in a glove-
box for over 110 days. Suppressed oxidation of Sn2+ could ef-
fectively inhibit the carrier recombination, leading to long carri-

er lifetime and accessible Voc. Wakamiya et al. used 1,4-bis(tri-
methylsilyl)-2,3,5,6-tetramethyl-1,4-dihydropyrazine  (TM-DHP)
to  react  with  SnF2 to  form  Sn(0)  nanoparticles  (Fig.  1(d))[8].
The  formed  Sn(0)  nanoparticles  in  the  precursor  solution
could  scavenge  Sn4+,  thus  enabling  strong  photolumines-
cence  and  prolonged  decay  of  the  deposited  perovskite
films.  The  PCE  of  resulting  device  increased  to  11.5%,  with  a
Voc of  0.76  V.  Most  recently,  Liu et  al.  introduced  phenylhy-
drazine cation (PhNHNH3

+) to improve the illumination stabil-
ity of FASnI3

[11].  Therefore, the use of efficacious reducing ad-
ditives gifts the Sn-PSCs with high performance and stability.

Particularly,  the  relatively  fast  crystallization  of  Sn-per-
ovskite  films  with  unfavorable  defects  and  rough  morpho-
logy poses a great challenge for achieving high PCE and stabil-
ity  for  Sn-based PSCs.  In  this  regard,  Han et  al.  precisely  con-
trolled  the  crystallization  process  by  reducing  the  surface
energy  with  pentafluorophen-oxyethylammonium  iodide
(FOEI)[12].  This  approach enabled highly  oriented and smooth
FASnI3 films  with  lower  defect  density  and longer  carrier  life-
time.  The  resulting  PSCs  offered  a  certified  PCE  of  10.16%.
The crystallization process was further regulated with n-propyl-
ammonium  iodide  (PAI)[14].  PAI  could  induce  templated
growth  of  FASnI3 crystals  by  forming  the  intermediate  phase
(Fig.  1(e)),  thus  resulting  in  a  highly  crystallized  FASnI3 film
with  preferential  orientation  along  (100)  plane  and  reduced
trap density.  Finally,  a  stabilized PCE of  11.22% was  achieved
and  the  device  kept  over  95%  of  its  initial  efficiency  after
1000  h  operation  at  the  maximum  power  point  (MPP).  These
results indicate that the retarded grain growth promotes form-
ing high-quality and oriented Sn-perovskite films.

Moreover,  large  organic  cation  (ethylenediammonium,
EA+;  phenylethylammonium, PEA+)  were used to regulate the
composition  and  structure  of  Sn-perovskites.  The  substitu-
tion of A-site cations with ethylenediammonium and guanidini-
um  cations  was  proved  to  cause  lattice  strain  relaxation  of
Sn-perovskites[15, 16].  Hayase et  al.  reported  the  correlation
between  lattice  strain  relaxation  and  the  PCE  of  Sn-based
PSCs.  Substituting  the  A-site  cations  with  smaller  cations
could reduce the lattice distortion, leading to improved carri-
er  mobility  and  higher  photovoltaic  performance[17].  Han
et  al.  also  did  mixed-cation  engineering  to  stabilize  the  per-
ovskite  phase  in  a  tin  triplehalide  amorphous  layer  with
CsFASnI3 polycrystals[18].  This  special  structure  could  block
the moisture, oxygen and ion diffusion in the devices. A certi-
fied  PCE  over  10%  was  achieved  and  over  95%  of  the  initial
PCE  was  retained  after  working  at  MPP  for  1000  h.  Hayase
et  al.  incorporated  large  EA+ cation  into  MASnI3 abiding  by
the  Goldschmidt  tolerance  factor  to  make  vertically-oriented
2D/3D  mixed  perovskite  films[19].  The  resulting  PSCs  gave  a
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PCE  of  9.24%  and  95%  of  the  initial  efficiency  was  retained
after being kept in a glovebox for 30 days without encapsula-
tion.

Regarding  the  bandgap  (1.35  eV)  of  Sn-based  per-
ovskites,  reducing the voltage loss  is  a  key  challenge for  get-
ting  high  PCE  for  Sn-based  PSCs.  Good  energy  level  align-
ment at interface affords effective electron extraction from per-
ovskites to the electron-transport layer (ETL). Ning et al. intro-
duced  ICBA  (indene-C60)  as  ETL  to  replace  PC61BM  ([6,6]-
phenyl-C61-butyric  acid  methyl  ester)  and  improved Voc to
0.94  V  (Figs.  1(f) and 1(g))[13].  The  shallower  lowest  unoccu-
pied  molecular  orbital  (LUMO)  energy  level  of  ICBA  brought
this Voc gain. Meanwhile, suppressing the interfacial carrier re-
combination  between  Sn-based  perovskites  and  ETL  can  in-
crease Voc.  Interestingly,  the  surface  Fermi  level  of  Sn-based
perovskites  with  EAI  shifted  to  shallower  value,  thus  effect-
ively passivating Sn4+ traps/defects[20, 21]. Liu et al. slightly sub-
stituted  I– with  Br– to  form  FASnI2.9Br0.1 to  realize  better  en-
ergy  level  alignment  with  C60

[11].  Br– doping  results  in  a  lar-
ger lattice shrinkage and a slight increase of bandgap, in com-
parison to pure iodide perovskite[11].  Owing to the strong s–p
and p–p couplings[22],  the  VB shifted downwards  realizing an
optimal  energy  level  alignment  between  Sn-perovskites  and
ETL.  The  resulting  device  gave  a  PCE  of  13.4%  (certified

12.4%)  with  long-term  durability,  also  setting  a  new  PCE  re-
cord for Sn-based PSCs (Fig. 1(h)).

In  summary,  the  advances  and  recent  renaissance  of  Sn-
based  PSCs  are  highlighted.  The  urgent  challenge  is  to  im-
prove Voc.  Adjusting  the  composition  and  structure  of  per-
ovskites  with  large  organic  cations,  reducing  crystal  defects
and charge carrier recombination, and selecting suitable ETLs
for  good  energy  level  alignment  are  very  crucial  in  enhan-
cing the performance of Sn-based PSCs. 
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Fig. 1. (Color online) (a) Representative PCE and Voc for Sn-based PSCs in 2020. Labels in the bar chart indicate perovskite components and addit-
ives (ICBA as ETL). (b) Defect formation energy diagram for bulk Sn(IV) defects in MASnI3 perovskites. (c) Schematic illustration of Sn2+ oxidation
to Sn4+. Bulk Sn4+ transforms to Sn2+, releasing two holes to the valence band (VB) and p-doping the perovskite, while surface Sn4+ acts as a deep
electron trap. Reproduced with permission[6], Copyright 2020, American Chemical Society. (d) Schematic illustration of the Sn4+-scavenging meth-
od with TM-DHP. Reproduced with permission[8], Copyright 2020, Springer Nature. (e) Fabrication and crystallization of Sn-based films with PAI
treatment. Reproduced with permission[14], Copyright 2020, Royal Society of Chemistry. (f) The diagram for recombination at perovskite-ETL inter-
face. (g) J–V curves for Sn-based devices with ICBA or PC61BM as ETL. Reproduced with permission[13], Copyright 2020, Springer Nature. (h) J–V
curves for Sn-based devices with PhNHNH3Cl treatment. Reproduced with permission[11], Copyright 2020, Elsevier.
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